
Descriptive Set Theory HW 5

Thomas Dean

Problem 1. LetX be Polish and let {An}n∈ω be a sequence of disjoint analytic
sets in X. Prove that there are disjoint Borel sets {Bn}n∈ω with Bn ⊇ An.

Solution. First, we state the following claim, which follows from using
Luzin’s analytic separation theorem pairwise and then taking a countable in-
tersection of all the witnesses to this result:

Claim 1. Given a countable collection {An}n∈ω of analytic sets and a fixed
i < ω, there’s a Borel set B ⊇ Ai such that Aj ⊆ Bc for each j 6= i.

Then, we construct the B′is by recursion where at the nth stage we use the
above claim to find a Bn that separates An from all Am for m > n and all
Bk for k < n. This implies that the collection {Bn}n∈ω is pairwise disjoint
because if n < m then Bn ⊆ Bc

m by construction. The result follows. ?

Problem 2. Let X be Polish and let E be an analytic equivalence relation
on X.

1. Show that for an analytic set A, its saturation [A]E is also analytic.

2. Let A,B ⊆ X be disjoint invariant analytic sets. Prove that there is an
invariant Borel set D separating A and B, i.e. D ⊇ A and D ∩B = ∅.

Solution.

1. Observe that x ∈ [A]E ⇔ (∃y ∈ A)(x, y) ∈ E ⇔ x ∈ proj1((X×A)∩E).
Since (X×A)∩E is analytic and analytic sets are closed under continuous
images, it follows that [A]E is analytic as well.

2. Assume A and B are disjoint and invariant analytic sets. We construct
an increasing sequence {Dn}n<ω of Borel sets such that [Dn] ∩ B = ∅
for each n as follows: let D0 be a Borel set separating A and B. Since
D0∩B is empty, it follows that [D0]∩B is empty because B is invariant.
Given Dn, observe that [Dn] is analytic by the previous part of this
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problem, and is disjoint from B by the induction hypothesis. Then,
let Dn+1 ⊇ [Dn] be a Borel set separating [Dn] and B. By the same
argument as above, [Dn+1] ∩B is empty.

So, we have A ⊆ D0 ⊆ [D0] ⊆ . . . ⊆ Dn ⊆ [Dn] ⊆ . . .. Finally, define
D =

⋃
iDi. This is Borel because it’s a countable union, it’s invariant

because D =
⋃

i[Di], and it separates A and B by construction.

?

Problem 3. Construct an example of a closed equivalence relation E on a
Polish space X and a closed set C ⊆ X such that the saturation [C]E is
analytic but not Borel.

Solution. Fix an analytic A ⊆ N that’s analytic but not Borel and let
C ⊆ N 2 be a closed set such that A = proj1(C). Define (a, b)E(c, d)⇔ a = c,
which is certainly closed. We want to identify points that project to the same
thing. Now, [C]E = proj1((N 2 × C) ∩ E) ⊆ N 2 is analytic like the previous
problem. If it were also Borel, consider the continuous function f : x 7→ (x, x)
from N to N 2. Then f−1([C]E) would also be Borel. But, it’s not hard to
check that f−1([C]E) = A, contradicting the choice of A. ?

Problem 4. Let X be set and let τ0 , τ1 be Polish topologies on X such that
τ0 ⊆ B(τ1). Show that B(τ0) = B(τ1)

Solution. Obviously B(τ0) ⊆ B(τ1). To show the other direction, consider
the identity map i : (X, τ1) → (X, τ0). The hypothesis implies this is a Borel
map. By the Luzin-Souslin theorem in Anush’s notes, because i is bijective,
it’s a Borel embedding (i.e. it maps Borel sets to Borel sets). This implies
that B(τ1) ⊆ B(τ0) as desired. ?

Problem 5. Prove the following characterization of Borel sets: A subset B
of a Polish space X is Borel iff it is an injective continuous image of a closed
subset of N .

Solution. The forward direction follows from Corollary 11.20 in Anush’s
notes; namely, we may refine the Polish topology on X to make B clopen.
Then, we may find a closed subset F of Baire space and a continous bijection
f : F → B, which would be continous wrt the original subspace topology
on B because we first refined the topology on X. Then f : F → X is a
continous injection with f”F = B. The backwards direction follows from the
Luzin-Souslin theorem, as closed subsets of Baire space are Polish and such
an injective continuous function would be a Borel embedding. ?
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Problem 6. Let X be a Polish space.

1. Show that F(ωω) admits a Borel selector.

2. By Problem 28, there is a continuous open surjection g : ωω → X. Prove
that the map f : F(X)→ F (ωω) defined by F 7→ g−1(F ) is Borel.

3. Conclude that F(X) admits a Borel selector.

Solution.

1. Given a closed subset F of ωω, let s(F ) be the left most branch of F .
Such a branch exists by recursion; i.e. we know that F = [T ] for some
tree pruned T on ω. Construct (sn)n<ω ∈ T ω such that dom(sn) = n and
sn ⊆ sn+1 by letting sn+1 = s_n k, where k is the least number such that
s_n k ⊆ y for some y ∈ [T ]. Such a k always exists because our tree is
pruned. Then s =

⋃
n sn is the leftmost branch through T (and therefore

of F).

To check this map is Borel, given t ∈ ω<ω, we have that F ∈ s−1(Nt)⇔
s(F ) ⊇ t. Observe though that this happens iff F ∩ Nt 6= ∅ and for
any s ∈ ω<ω lexicographically to the left of t, F ∩ Ns = ∅. But, then
F ∈ s−1(Nt)⇔ F ∈ [Nt] ∩

⋂
s[Ns]

c. The RHS is Borel by the definition
of the Effros Borel space because the intersection is countable. So the
selector is indeed a Borel selector.

2. Fix t ∈ ω<ω. Observe that g”Nt is open. Then we have F ∈ f−1[Nt]⇔
g−1(F ) ∈ [Nt] ⇔ g−1(F ) ∩ Nt 6= ∅ ⇔ F ∩ g”Nt 6= ∅ ⇔ F ∈ [g”Nt]. It
follows that the map f is Borel.

3. The map g ◦ s ◦ f : F(X) → X is Borel by the previous parts of this
problem. Definition chasing yields that this is a selector, as desired.

?

Problem 7. For a topological space X, show that BP (X) admits envelopes.

Solution. For a set A ⊆ X, consider the set B = U(Ac)c ∪ A = U(Ac)c ∪
(U(Ac)∩A)). U(Ac)c has the BP, and since U(Ac)  Ac, we have that U(Ac)\
Ac = U(Ac) ∩ A is meager (and therefore has the BP). So, B ∈ BP (X). To
show that B is an envelope for A, fix C ⊆ B \ A = U(Ac)c ∩ Ac and assume
that C has the BP . It’s enough to show that C is meager. Let U =∗ C. If
U is empty, then C is meager and we win. Otherwise, if U 6= ∅, then U  C.
Since C ⊆ Ac, we have that U  Ac, implying that U ⊆ U(Ac). Further,
since C ⊆ U(Ac)c, we have U  U(Ac)c. This implies that U ∩ U(Ac) = U is
meager. Since U =∗ C, we get that C is meager as well. ?
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Problem 8. Prove directly (without using Wadge’s theorem or lemma) that
any countable dense Q ⊆ 2ω is Σ0

2 -complete.

Solution. Q is Σ0
2 because singletons are closed and Q is countable. Now,

assume that X is a zero-dimensional Polish space and A ⊆ X be Σ0
2. By Thm

5.8 in Anush’s notes we may assume that X is a closed subset of ωω. Then,
we may write A =

⋃
nCn where each Cn is a closed subset of ωω. This implies

that Cn = [Tn] for some pruned tree Tn on ω.
For the sake of sanity, we hope the reader is happy with just a (hopefully

clear) description of the map f : ωω → 2ω. First, for each t ∈ ω<ω, fix a
qt ∈ Q∩Nt and rt ∈ Qc ∩Nt, where if s v t, then qs = qt and rs = rt. We can
do this because Q is countable and dense. Also, fix x ∈ ωω. The main idea
is that we check if x ∈ [Tn] one n at a time, by successively checking if initial
segments of x are in Tn. When there’s an initial segment of x that’s not in Tn,
we stop checking if x ∈ [Tn] and move to check if x ∈ [Tn+1].

The value of f(x)(n) will depend on what we’ve checked at the nth stage of
our computation. In particular, assume we are checking if x|k ∈ Tm at stage
n. If, indeed, x|k ∈ Tm, then we set f(x)(n) = qf(x)|n(n). If this is the case,
during the n + 1 stage in our computation we will check if x|(k + 1) ∈ Tm.
Otherwise, we set f(x)(n) = rf(x)|n(n). If this is the case, during the n + 1
stage in our computation we will check if x|k ∈ Tm+1. In the first case, f(x)
looks more like an element of Q. In the second case, f(x) looks more like an
element of Qc.

Now, notice that, indeed, x ∈ A ⇔ f(x) ∈ Q because we required that
qs = qt and rs = rt if s v t. To check continuity, fix x ∈ ωω and n < ω. We
must show that the first n digits of f(x) depends on the first m digits of x for
some m < ω. But this is the case because the first n digits of f(x) depends on
at most the first n digits of x (depending on whether or not initial segments
of x are in the various Ti). It follows that A ≤W Q and so Q is Σ0

2-complete
as desired. ?

Problem 9. Show that the set of eventually zero binary sequences is Σ0
2

complete. Conclude that the set of binary sequences with infinitely many 0’s
is Π0

2 complete.

Solution. Let Q2 be the eventually zero binary sequences and N2 the binary
sequences with infinitely many 0’s. Regarding the second part of this problem,
if Q2 is Σ0

2 complete, then the same argument would show that the eventually
one sequences is also Σ0

2 complete. This implies that the complement (i.e. N2)
is Π0

2 complete.
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Now, Q2 is countable because elements of Q2 are determined by finite initial
segments (because they’re eventually zero). It’s also not hard to see that Q2

is dense. So by the previous problem, Q2 is Σ0
2 complete.

?
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