Descriptive Set Theory HW 5

Thomas Dean

Problem 1. Let X be Polish and let $\left\{A_{n}\right\}_{n \in \omega}$ be a sequence of disjoint analytic sets in X. Prove that there are disjoint Borel sets $\left\{B_{n}\right\}_{n \in \omega}$ with $B_{n} \supseteq A_{n}$.

Solution. First, we state the following claim, which follows from using Luzin's analytic separation theorem pairwise and then taking a countable intersection of all the witnesses to this result:

Claim 1. Given a countable collection $\left\{A_{n}\right\}_{n \in \omega}$ of analytic sets and a fixed $i<\omega$, there's a Borel set $B \supseteq A_{i}$ such that $A_{j} \subseteq B^{c}$ for each $j \neq i$.

Then, we construct the $B_{i}^{\prime} s$ by recursion where at the $n^{\text {th }}$ stage we use the above claim to find a B_{n} that separates A_{n} from all A_{m} for $m>n$ and all B_{k} for $k<n$. This implies that the collection $\left\{B_{n}\right\}_{n \in \omega}$ is pairwise disjoint because if $n<m$ then $B_{n} \subseteq B_{m}^{c}$ by construction. The result follows. \star

Problem 2. Let X be Polish and let E be an analytic equivalence relation on X.

1. Show that for an analytic set A, its saturation $[A]_{E}$ is also analytic.
2. Let $A, B \subseteq X$ be disjoint invariant analytic sets. Prove that there is an invariant Borel set D separating A and B, i.e. $D \supseteq A$ and $D \cap B=\varnothing$.

Solution.

1. Observe that $x \in[A]_{E} \Leftrightarrow(\exists y \in A)(x, y) \in E \Leftrightarrow x \in \operatorname{proj}_{1}((X \times A) \cap E)$. Since $(X \times A) \cap E$ is analytic and analytic sets are closed under continuous images, it follows that $[A]_{E}$ is analytic as well.
2. Assume A and B are disjoint and invariant analytic sets. We construct an increasing sequence $\left\{D_{n}\right\}_{n<\omega}$ of Borel sets such that $\left[D_{n}\right] \cap B=\varnothing$ for each n as follows: let D_{0} be a Borel set separating A and B. Since $D_{0} \cap B$ is empty, it follows that $\left[D_{0}\right] \cap B$ is empty because B is invariant. Given D_{n}, observe that $\left[D_{n}\right]$ is analytic by the previous part of this
problem, and is disjoint from B by the induction hypothesis. Then, let $D_{n+1} \supseteq\left[D_{n}\right]$ be a Borel set separating $\left[D_{n}\right]$ and B. By the same argument as above, $\left[D_{n+1}\right] \cap B$ is empty.
So, we have $A \subseteq D_{0} \subseteq\left[D_{0}\right] \subseteq \ldots \subseteq D_{n} \subseteq\left[D_{n}\right] \subseteq \ldots$. Finally, define $D=\bigcup_{i} D_{i}$. This is Borel because it's a countable union, it's invariant because $D=\bigcup_{i}\left[D_{i}\right]$, and it separates A and B by construction.

Problem 3. Construct an example of a closed equivalence relation E on a Polish space X and a closed set $C \subseteq X$ such that the saturation $[C]_{E}$ is analytic but not Borel.

Solution. Fix an analytic $A \subseteq \mathcal{N}$ that's analytic but not Borel and let $C \subseteq \mathcal{N}^{2}$ be a closed set such that $A=\operatorname{proj}_{1}(C)$. Define $(a, b) E(c, d) \Leftrightarrow a=c$, which is certainly closed. We want to identify points that project to the same thing. Now, $[C]_{E}=\operatorname{proj}_{1}\left(\left(\mathcal{N}^{2} \times C\right) \cap E\right) \subseteq \mathcal{N}^{2}$ is analytic like the previous problem. If it were also Borel, consider the continuous function $f: x \mapsto(x, x)$ from \mathcal{N} to \mathcal{N}^{2}. Then $f^{-1}\left([C]_{E}\right)$ would also be Borel. But, it's not hard to check that $f^{-1}\left([C]_{E}\right)=A$, contradicting the choice of A.

Problem 4. Let X be set and let τ_{0}, τ_{1} be Polish topologies on X such that $\tau_{0} \subseteq \mathcal{B}\left(\tau_{1}\right)$. Show that $\mathcal{B}\left(\tau_{0}\right)=\mathcal{B}\left(\tau_{1}\right)$

Solution. Obviously $\mathcal{B}\left(\tau_{0}\right) \subseteq \mathcal{B}\left(\tau_{1}\right)$. To show the other direction, consider the identity map $i:\left(X, \tau_{1}\right) \rightarrow\left(X, \tau_{0}\right)$. The hypothesis implies this is a Borel map. By the Luzin-Souslin theorem in Anush's notes, because i is bijective, it's a Borel embedding (i.e. it maps Borel sets to Borel sets). This implies that $\mathcal{B}\left(\tau_{1}\right) \subseteq \mathcal{B}\left(\tau_{0}\right)$ as desired.

Problem 5. Prove the following characterization of Borel sets: A subset B of a Polish space X is Borel iff it is an injective continuous image of a closed subset of \mathcal{N}.

Solution. The forward direction follows from Corollary 11.20 in Anush's notes; namely, we may refine the Polish topology on X to make B clopen. Then, we may find a closed subset F of Baire space and a continous bijection $f: F \rightarrow B$, which would be continous wrt the original subspace topology on B because we first refined the topology on X. Then $f: F \rightarrow X$ is a continous injection with $f^{\prime \prime} F=B$. The backwards direction follows from the Luzin-Souslin theorem, as closed subsets of Baire space are Polish and such an injective continuous function would be a Borel embedding.

Problem 6. Let X be a Polish space.

1. Show that $\mathcal{F}\left(\omega^{\omega}\right)$ admits a Borel selector.
2. By Problem 28, there is a continuous open surjection $g: \omega^{\omega} \rightarrow X$. Prove that the map $f: \mathcal{F}(X) \rightarrow F\left(\omega^{\omega}\right)$ defined by $F \mapsto g^{-1}(F)$ is Borel.
3. Conclude that $\mathcal{F}(X)$ admits a Borel selector.

Solution.

1. Given a closed subset F of ω^{ω}, let $s(F)$ be the left most branch of F. Such a branch exists by recursion; i.e. we know that $F=[T]$ for some tree pruned T on ω. Construct $\left(s_{n}\right)_{n<\omega} \in T^{\omega}$ such that $\operatorname{dom}\left(s_{n}\right)=n$ and $s_{n} \subseteq s_{n+1}$ by letting $s_{n+1}=s_{n}^{\overparen{ }} k$, where k is the least number such that $s_{n}^{\overparen{ }} k \subseteq y$ for some $y \in[T]$. Such a k always exists because our tree is pruned. Then $s=\bigcup_{n} s_{n}$ is the leftmost branch through T (and therefore of F).
To check this map is Borel, given $t \in \omega^{<\omega}$, we have that $F \in s^{-1}\left(N_{t}\right) \Leftrightarrow$ $s(F) \supseteq t$. Observe though that this happens iff $F \cap N_{t} \neq \varnothing$ and for any $s \in \omega^{<\omega}$ lexicographically to the left of $t, F \cap N_{s}=\varnothing$. But, then $F \in s^{-1}\left(N_{t}\right) \Leftrightarrow F \in\left[N_{t}\right] \cap \bigcap_{s}\left[N_{s}\right]^{c}$. The RHS is Borel by the definition of the Effros Borel space because the intersection is countable. So the selector is indeed a Borel selector.
2. Fix $t \in \omega^{<\omega}$. Observe that $g^{"} N_{t}$ is open. Then we have $F \in f^{-1}\left[N_{t}\right] \Leftrightarrow$ $g^{-1}(F) \in\left[N_{t}\right] \Leftrightarrow g^{-1}(F) \cap N_{t} \neq \varnothing \Leftrightarrow F \cap g^{"} N_{t} \neq \varnothing \Leftrightarrow F \in\left[g^{\prime \prime} N_{t}\right]$. It follows that the map f is Borel.
3. The map $g \circ s \circ f: \mathcal{F}(X) \rightarrow X$ is Borel by the previous parts of this problem. Definition chasing yields that this is a selector, as desired.

Problem 7. For a topological space X, show that $B P(X)$ admits envelopes.
Solution. For a set $A \subseteq X$, consider the set $B=U\left(A^{c}\right)^{c} \cup A=U\left(A^{c}\right)^{c} \cup$ $\left.\left(U\left(A^{c}\right) \cap A\right)\right) . U\left(A^{c}\right)^{c}$ has the BP , and since $U\left(A^{c}\right) \Vdash A^{c}$, we have that $U\left(A^{c}\right) \backslash$ $A^{c}=U\left(A^{c}\right) \cap A$ is meager (and therefore has the BP). So, $B \in B P(X)$. To show that B is an envelope for A, fix $C \subseteq B \backslash A=U\left(A^{c}\right)^{c} \cap A^{c}$ and assume that C has the $B P$. It's enough to show that C is meager. Let $U={ }^{*} C$. If U is empty, then C is meager and we win. Otherwise, if $U \neq \varnothing$, then $U \Vdash C$. Since $C \subseteq A^{c}$, we have that $U \Vdash A^{c}$, implying that $U \subseteq U\left(A^{c}\right)$. Further, since $C \subseteq U\left(A^{c}\right)^{c}$, we have $U \Vdash U\left(A^{c}\right)^{c}$. This implies that $U \cap U\left(A^{c}\right)=U$ is meager. Since $U=^{*} C$, we get that C is meager as well.

Problem 8. Prove directly (without using Wadge's theorem or lemma) that any countable dense $Q \subseteq 2^{\omega}$ is $\boldsymbol{\Sigma}_{2}^{0}$-complete.

Solution. Q is $\boldsymbol{\Sigma}_{2}^{0}$ because singletons are closed and Q is countable. Now, assume that X is a zero-dimensional Polish space and $A \subseteq X$ be $\boldsymbol{\Sigma}_{2}^{0}$. By Thm 5.8 in Anush's notes we may assume that X is a closed subset of ω^{ω}. Then, we may write $A=\bigcup_{n} C_{n}$ where each C_{n} is a closed subset of ω^{ω}. This implies that $C_{n}=\left[T_{n}\right]$ for some pruned tree T_{n} on ω.

For the sake of sanity, we hope the reader is happy with just a (hopefully clear) description of the map $f: \omega^{\omega} \rightarrow 2^{\omega}$. First, for each $t \in \omega^{<\omega}$, fix a $q_{t} \in Q \cap N_{t}$ and $r_{t} \in Q^{c} \cap N_{t}$, where if $s \sqsubseteq t$, then $q_{s}=q_{t}$ and $r_{s}=r_{t}$. We can do this because Q is countable and dense. Also, fix $x \in \omega^{\omega}$. The main idea is that we check if $x \in\left[T_{n}\right]$ one n at a time, by successively checking if initial segments of x are in T_{n}. When there's an initial segment of x that's not in T_{n}, we stop checking if $x \in\left[T_{n}\right]$ and move to check if $x \in\left[T_{n+1}\right]$.

The value of $f(x)(n)$ will depend on what we've checked at the $n^{\text {th }}$ stage of our computation. In particular, assume we are checking if $x \mid k \in T_{m}$ at stage n. If, indeed, $x \mid k \in T_{m}$, then we set $f(x)(n)=q_{f(x) \mid n}(n)$. If this is the case, during the $n+1$ stage in our computation we will check if $x \mid(k+1) \in T_{m}$. Otherwise, we set $f(x)(n)=r_{f(x) \mid n}(n)$. If this is the case, during the $n+1$ stage in our computation we will check if $x \mid k \in T_{m+1}$. In the first case, $f(x)$ looks more like an element of Q. In the second case, $f(x)$ looks more like an element of Q^{c}.

Now, notice that, indeed, $x \in A \Leftrightarrow f(x) \in Q$ because we required that $q_{s}=q_{t}$ and $r_{s}=r_{t}$ if $s \sqsubseteq t$. To check continuity, fix $x \in \omega^{\omega}$ and $n<\omega$. We must show that the first n digits of $f(x)$ depends on the first m digits of x for some $m<\omega$. But this is the case because the first n digits of $f(x)$ depends on at most the first n digits of x (depending on whether or not initial segments of x are in the various T_{i}). It follows that $A \leq_{W} Q$ and so Q is $\boldsymbol{\Sigma}_{2}^{0}$-complete as desired.

Problem 9. Show that the set of eventually zero binary sequences is $\boldsymbol{\Sigma}_{2}^{0}$ complete. Conclude that the set of binary sequences with infinitely many 0 's is $\boldsymbol{\Pi}_{2}^{0}$ complete.

Solution. Let Q_{2} be the eventually zero binary sequences and N_{2} the binary sequences with infinitely many 0's. Regarding the second part of this problem, if Q_{2} is $\boldsymbol{\Sigma}_{2}^{0}$ complete, then the same argument would show that the eventually one sequences is also $\boldsymbol{\Sigma}_{2}^{0}$ complete. This implies that the complement (i.e. N_{2}) is $\boldsymbol{\Pi}_{2}^{0}$ complete.

Now, Q_{2} is countable because elements of Q_{2} are determined by finite initial segments (because they're eventually zero). It's also not hard to see that Q_{2} is dense. So by the previous problem, Q_{2} is $\boldsymbol{\Sigma}_{2}^{0}$ complete.

